University of Münster
2025-10-30
scplot.scan.case1 <- scdf(
c(A = 3, 2, 4, 6, 4, 3,
B = 6, 5, 4, 6, 7, 5, 6, 8, 6, 7, 8, 9, 7, 8,
C = 6, 6, 8, 5, 7),
name = "Dustin"
)
case2 <- scdf(
c(A = 0, 1, 3, 1, 4, 2, 1,
B = 2, 1, 4, 3, 5, 5, 7, 6, 3, 8, 6, 4, 7,
C = 6, 5, 6, 8, 6),
name = "Mike"
)
case3 <- scdf(
c(A = 7, 5, 6, 4, 4, 7, 5, 7, 4,
B = 8, 9, 11, 13, 12, 15, 16, 13, 17, 16, 18,
C = 17, 20, 22, 18, 20),
name = "Will"
)
strange_study <- c(case1, case2, case3)Describe Single-Case Data
Dustin Mike Will
Design A-B-C A-B-C A-B-C
n.A 6 7 9
n.B 14 13 11
n.C 5 5 5
mis.A 0 0 0
mis.B 0 0 0
mis.C 0 0 0
Dustin Mike Will
m.A 3.667 1.714 5.444
m.B 6.571 4.692 13.455
m.C 6.4 6.2 19.4
md.A 3.5 1.0 5.0
md.B 6.5 5.0 13.0
md.C 6 6 20
sd.A 1.366 1.380 1.333
sd.B 1.399 2.097 3.267
sd.C 1.140 1.095 1.949
mad.A 0.741 1.483 1.483
mad.B 1.483 2.965 4.448
mad.C 1.483 0.000 2.965
min.A 2 0 4
min.B 4 1 8
min.C 5 5 17
max.A 6 4 7
max.B 9 8 18
max.C 8 8 22
trend.A 0.229 0.214 -0.083
trend.B 0.246 0.357 0.909
trend.C 0.1 0.3 0.4
Overlap Indices
Comparing phase 1 against phase 2
Dustin Mike Will
Design A-B-C A-B-C A-B-C
PND 50 54 100
PEM 100 92 100
PET 71 62 100
NAP 93 88 100
NAP rescaled 86 76 100
PAND 90 80 100
IRD 0.76 0.56 1.00
Tau_U(A) 0.53 0.45 0.67
Tau_U(BA) 0.66 0.56 0.80
Base_Tau 0.60 0.55 0.74
Diff_mean 2.90 2.98 8.01
Diff_trend 0.02 0.14 0.99
SMD 2.13 2.16 6.01
Hedges_g 2.00 1.51 2.96
Piecewise Regression Analysis
Contrast model: W / level = first, slope = first
Fitted a gaussian distribution.
F(5, 19) = 7.88; p = 0.000; R² = 0.675; Adjusted R² = 0.589; AIC = 85.1094
B LL-CI95% UL-CI95% SE t p delta R²
Intercept 3.095 1.463 4.728 0.833 3.716 0.001
Trend (mt) 0.229 -0.311 0.768 0.275 0.831 0.416 0.012
Level phase B (phaseB) 0.505 -1.886 2.896 1.220 0.414 0.684 0.003
Level phase C (phaseC) -1.467 -11.107 8.173 4.919 -0.298 0.769 0.002
Slope phase B (interB) 0.018 -0.542 0.577 0.285 0.062 0.952 0.000
Slope phase C (interC) -0.129 -1.023 0.766 0.456 -0.282 0.781 0.001
Autocorrelations of the residuals
lag cr
1 -0.28
2 -0.45
3 0.28
Ljung-Box test: X²(3) = 10.51; p = 0.015
Formula: values ~ 1 + mt + phaseB + phaseC + interB + interC
Piecewise Regression Analysis
Contrast model: W / level = first, slope = first
Fitted a gaussian distribution.
F(5, 19) = 8.00; p = 0.000; R² = 0.678; Adjusted R² = 0.593; AIC = 98.8502
B LL-CI95% UL-CI95% SE t p delta R²
Intercept 1.071 -0.952 3.094 1.032 1.038 0.312
Trend (mt) 0.214 -0.347 0.775 0.286 0.749 0.463 0.009
Level phase B (phaseB) -0.022 -2.975 2.931 1.506 -0.015 0.989 0.000
Level phase C (phaseC) 0.243 -9.633 10.118 5.039 0.048 0.962 0.000
Slope phase B (interB) 0.143 -0.460 0.746 0.308 0.465 0.648 0.004
Slope phase C (interC) 0.086 -1.008 1.179 0.558 0.154 0.880 0.000
Autocorrelations of the residuals
lag cr
1 -0.20
2 -0.12
3 0.25
Ljung-Box test: X²(3) = 3.43; p = 0.330
Formula: values ~ 1 + mt + phaseB + phaseC + interB + interC
Piecewise Regression Analysis
Contrast model: W / level = first, slope = first
Fitted a gaussian distribution.
F(5, 19) = 68.16; p = 0.000; R² = 0.947; Adjusted R² = 0.933; AIC = 98.63478
B LL-CI95% UL-CI95% SE t p delta R²
Intercept 5.778 3.961 7.595 0.927 6.232 0.000
Trend (mt) -0.083 -0.465 0.298 0.195 -0.428 0.673 0.001
Level phase B (phaseB) 3.881 1.162 6.600 1.387 2.798 0.011 0.022
Level phase C (phaseC) 14.489 7.893 21.084 3.365 4.306 0.000 0.052
Slope phase B (interB) 0.992 0.518 1.467 0.242 4.100 0.001 0.047
Slope phase C (interC) 0.483 -0.526 1.493 0.515 0.938 0.360 0.002
Autocorrelations of the residuals
lag cr
1 -0.27
2 -0.08
3 -0.07
Ljung-Box test: X²(3) = 2.40; p = 0.493
Formula: values ~ 1 + mt + phaseB + phaseC + interB + interC
case1 <- scdf(values = c(A = 2, 2, 4, 5, B = 8, 7, 6, 9, 8, 7))
case2 <- scdf(values = c(A = 3, 1, 3, 2, B = 6, 3, 4, 6, 7, 5))
study <- c(case1, case2)
study#A single-case data frame with two cases
[case #1]: values mt phase │ [case #2]: values mt phase │
2 1 A │ 3 1 A │
2 2 A │ 1 2 A │
4 3 A │ 3 3 A │
5 4 A │ 2 4 A │
8 5 B │ 6 5 B │
7 6 B │ 3 6 B │
6 7 B │ 4 7 B │
9 8 B │ 6 8 B │
8 9 B │ 7 9 B │
7 10 B │ 5 10 B │
case1 <- scdf(
values = c(A = 2,2,3,5, B = 8,7,6,9,7,7),
teacher = c(0,0,1,1,0,1,1,1,0,1),
hour = c(2,3,4,3,3,1,6,5,2,2)
)
case1#A single-case data frame with one case
[case #1]: values teacher hour mt phase
2 0 2 1 A
2 0 3 2 A
3 1 4 3 A
5 1 3 4 A
8 0 3 5 B
7 1 1 6 B
6 1 6 7 B
9 1 5 8 B
7 0 2 9 B
7 1 2 10 B
Create a dataset in scan for the following data frame:
| Table | ||
|---|---|---|
| Single case data frame for case | ||
| values | mt | phase |
| 5 | 1 | A |
| 7 | 2 | A |
| 8 | 3 | A |
| 5 | 4 | A |
| 7 | 5 | A |
| 12 | 6 | B |
| 16 | 7 | B |
| 18 | 8 | B |
| 15 | 9 | B |
| 14 | 10 | B |
| 19 | 11 | B |
Create a new case and combine this case and the previous case into a single scdf:
| Table | ||
|---|---|---|
| Single case data frame for case | ||
| values | mt | phase |
| 2 | 1 | A |
| 5 | 2 | A |
| 2 | 3 | A |
| 2 | 4 | A |
| 3 | 5 | A |
| 4 | 6 | A |
| 10 | 7 | B |
| 12 | 8 | B |
| 8 | 9 | B |
| 12 | 10 | B |
| 11 | 11 | B |
case1 <- scdf(values = c(A = 5, 7, 8, 5, 7, B = 12, 16, 18, 15, 14, 19))
case2 <- scdf(values = c(A = 2, 5, 2, 2, 3, 4, B = 10, 12, 8, 12, 11))
study <- c(case1, case2)#A single-case data frame with two cases
[case #1]: values teacher hour mt phase │ [case #2]: values mt phase │
2 0 2 1 A │ 2 1 A │
2 0 3 2 A │ 5 2 A │
3 1 4 3 A │ 2 3 A │
5 1 3 4 A │ 2 4 A │
8 0 3 5 B │ 3 5 A │
7 1 1 6 B │ 4 6 A │
6 1 6 7 B │ 10 7 B │
9 1 5 8 B │ 12 8 B │
7 0 2 9 B │ 8 9 B │
7 1 2 10 B │ 12 10 B │
│ 11 11 B │
Jürgen Wilbert - Introduction to R