Version: 15 April 2021
- arrow keys: move through slides
- f: toggle full-screen
Statistical models are “translations” of (scientific) hypotheses and entities.
The formulation of the correct model is a crucial and insightful process.
When we have a “good” statistical model we can draw valid conclusions.
Single-case data are … “just” data.
We don’t need a new statistic for analyzing single-case data.
We “just” need good models.
\(y_i = \beta_0\)
\(y_i = \beta_1 MT_i\)
\(y_i = \beta_2 Phase_i\)
\(y_i = \beta_3 (MT_i-\sigma) \times Phase_i\)
\(\sigma\) := MT at which Phase B starts minus one (Berry & Lewis-Beck)
—— Alternative: \(\sigma\) := MT at which Phase B starts (Huitema & McKean)
\(y_i = \epsilon_i\)
\(y_i = \beta_0 + \beta_1 MT_i + \beta_2 Phase_i + \beta_3 (MT_i-\sigma) \times Phase_i + \epsilon_i\)
Describe Single-Case Data Design: A B Case1 n.A 7 n.B 10 mis.A 0 mis.B 0 Case1 m.A 3.14 m.B 6.70 md.A 3.00 md.B 6.50 sd.A 1.07 sd.B 1.77 mad.A 1.48 mad.B 2.22 min.A 2.00 min.B 4.00 max.A 5.00 max.B 9.00 trend.A -0.04 trend.B 0.53
Piecewise Regression Analysis Dummy model: B&L-B Fitted a gaussian distribution. F(3, 13) = 27.14; p = 0.000; R² = 0.862; Adjusted R² = 0.831 B 2.5% 97.5% SE t p ΔR² Intercept 3.286 1.695 4.876 0.811 4.049 0.001 Trend mt -0.036 -0.391 0.320 0.181 -0.197 0.847 0.0004 Level phase B 0.764 -1.051 2.580 0.926 0.825 0.424 0.0072 Slope phase B 0.563 0.151 0.975 0.210 2.681 0.019 0.0761 Autocorrelations of the residuals lag cr 1 -0.04 2 -0.67 3 0.09 Formula: values ~ 1 + mt + phaseB + interB
library(scan) dat <- scdf(c(A = 2,2,0,1,4,3,2,3,2, B = 3,4,5,5,6,7,7,8)) plot(dat) describeSC(dat) plm(dat)
plot(dat)
describeSC(dat)
Describe Single-Case Data Design: A B Case1 n.A 9 n.B 8 mis.A 0 mis.B 0 Case1 m.A 2.11 m.B 5.62 md.A 2.00 md.B 5.50 sd.A 1.17 sd.B 1.69 mad.A 1.48 mad.B 2.22 min.A 0.00 min.B 3.00 max.A 4.00 max.B 8.00 trend.A 0.15 trend.B 0.68
plm(dat)
Piecewise Regression Analysis Dummy model: B&L-B Fitted a gaussian distribution. F(3, 13) = 31.39; p = 0.000; R² = 0.879; Adjusted R² = 0.851 B 2.5% 97.5% SE t p ΔR² Intercept 1.361 0.108 2.615 0.640 2.128 0.053 Trend mt 0.150 -0.073 0.373 0.114 1.320 0.210 0.0163 Level phase B -0.140 -1.852 1.573 0.874 -0.160 0.875 0.0002 Slope phase B 0.529 0.181 0.876 0.177 2.984 0.011 0.0831 Autocorrelations of the residuals lag cr 1 0.00 2 -0.58 3 -0.03 Formula: values ~ 1 + mt + phaseB + interB
Whether you need to include a trend, level, or slope effect is a theoretical decision:
What effects did prior studies reveal?
How do you expect the process to evolve?
Do you expect a continuous change independent of the intervention? (trend effect)
Piecewise Regression Analysis Dummy model: B&L-B Fitted a gaussian distribution. F(3, 13) = 14.53; p = 0.000; R² = 0.770; Adjusted R² = 0.717 B 2.5% 97.5% SE t p ΔR² Intercept 1.250 -0.332 2.832 0.807 1.548 0.146 Trend mt 0.150 -0.131 0.431 0.143 1.046 0.315 0.0193 Level phase B 2.364 0.203 4.526 1.103 2.144 0.052 0.0812 Slope phase B -0.031 -0.469 0.407 0.224 -0.138 0.892 0.0003 Autocorrelations of the residuals lag cr 1 -0.21 2 -0.08 3 -0.45 Formula: values ~ 1 + mt + phaseB + interB
The plm function comes with three additional parameters:
trend
, level
, and slope
All are set to TRUE
by default. That is, all three effects are included into the model.
By explicitly setting an argument to FALSE (e.g. level = FALSE
) you drop this effect from the model.
In this example:
\(y_i = \beta_0 + \beta_1 MT_i + \beta_2 Phase_i + \beta_3 (MT_i-\sigma) \times Phase_i + \epsilon_i\)
becomes
\(y_i = \beta_0 + \beta_1 MT_i + \beta_3 (MT_i-\sigma) \times Phase_i + \epsilon_i\)
\(y_i = \beta_0 + \beta_1 MT_i + \beta_2 Phase_i + \beta_3 (MT_i-\sigma) \times Phase_i + \epsilon_i\)
\(y_i = \beta_0 + \beta_2 Phase_i + \epsilon_i\) (basically a t-test)
plm(dat, trend = FALSE, slope = FALSE)
Piecewise Regression Analysis Dummy model: B&L-B Fitted a gaussian distribution. F(1, 15) = 43.24; p = 0.000; R² = 0.742; Adjusted R² = 0.725 B 2.5% 97.5% SE t p ΔR² Intercept 2.0 1.284 2.716 0.365 5.477 0 Level phase B 3.5 2.457 4.543 0.532 6.575 0 0.7424 Autocorrelations of the residuals lag cr 1 -0.01 2 0.00 3 -0.37 Formula: values ~ 1 + phaseB
Take the previous data example …
dat <- scdf(c(A = 2,2,0,1,4,3,2,3,2, B = 3,4,5,5,6,7,7,8))
and recalculate a plm model without a level effect.
plm(dat, level = FALSE)
Piecewise Regression Analysis Dummy model: B&L-B Fitted a gaussian distribution. F(2, 14) = 50.60; p = 0.000; R² = 0.878; Adjusted R² = 0.861 B 2.5% 97.5% SE t p ΔR² Intercept 1.393 0.242 2.543 0.587 2.373 0.033 Trend mt 0.141 -0.043 0.324 0.094 1.501 0.155 0.0196 Slope phase B 0.523 0.195 0.851 0.167 3.125 0.007 0.0848 Autocorrelations of the residuals lag cr 1 0.01 2 -0.58 3 -0.02 Formula: values ~ 1 + mt + interB
What is your hypothesis here?
it depends …
Contrasts are model settings that define which levels of a categorical variable are compared in a model.
In single-case models the phase variable is such a categorical variable.
The level-effect and the slope-effect in a model depend on the setting of the contrasts.
Here we will learn about two contrast settings:
(phase) | mt | values | level_B | level_C | slope_B | slope_C |
---|---|---|---|---|---|---|
A | 1 | 3 | 0 | 0 | 0 | 0 |
A | 2 | 6 | 0 | 0 | 0 | 0 |
A | 3 | 4 | 0 | 0 | 0 | 0 |
A | 4 | 7 | 0 | 0 | 0 | 0 |
B | 5 | 5 | 1 | 0 | 1 | 0 |
B | 6 | 3 | 1 | 0 | 2 | 0 |
B | 7 | 4 | 1 | 0 | 3 | 0 |
B | 8 | 6 | 1 | 0 | 4 | 0 |
C | 9 | 7 | 0 | 1 | 0 | 1 |
C | 10 | 5 | 0 | 1 | 0 | 2 |
C | 11 | 6 | 0 | 1 | 0 | 3 |
C | 12 | 4 | 0 | 1 | 0 | 4 |
(phase) | mt | values | level_B | level_C | slope_B | slope_C |
---|---|---|---|---|---|---|
A | 1 | 3 | 0 | 0 | 0 | 0 |
A | 2 | 6 | 0 | 0 | 0 | 0 |
A | 3 | 4 | 0 | 0 | 0 | 0 |
A | 4 | 7 | 0 | 0 | 0 | 0 |
B | 5 | 5 | 1 | 0 | 1 | 0 |
B | 6 | 3 | 1 | 0 | 2 | 0 |
B | 7 | 4 | 1 | 0 | 3 | 0 |
B | 8 | 6 | 1 | 0 | 4 | 0 |
C | 9 | 7 | 1 | 1 | 5 | 1 |
C | 10 | 5 | 1 | 1 | 6 | 2 |
C | 11 | 6 | 1 | 1 | 7 | 3 |
C | 12 | 4 | 1 | 1 | 8 | 4 |
scan
The plm
function has an argument model
(default model = "B&L-B"
)
model = "B&L-B"
will set contrasts for each phase against phase A.
model = "JW"
will set contrasts for each phase against its preceding phase.
Example:
plm(case, model = "JW")
Comparing phase effects to phase A
Piecewise Regression Analysis Dummy model: B&L-B Fitted a gaussian distribution. F(5, 18) = 20.99; p = 0.000; R² = 0.854; Adjusted R² = 0.813 B 2.5% 97.5% SE t p ΔR² Intercept 2.893 1.384 4.402 0.770 3.758 0.001 Trend mt 0.024 -0.275 0.323 0.152 0.156 0.878 0.0002 Level phase B 3.738 1.779 5.698 1.000 3.739 0.002 0.1137 Level phase E -0.881 -4.696 2.934 1.946 -0.453 0.656 0.0017 Slope phase B -0.012 -0.434 0.411 0.216 -0.055 0.957 0.0000 Slope phase E -0.083 -0.506 0.339 0.216 -0.387 0.704 0.0012 Autocorrelations of the residuals lag cr 1 -0.26 2 -0.20 3 0.25 Formula: values ~ 1 + mt + phaseB + phaseE + interB + interE
Comparing phase effects of each phase to the to previous phase
Piecewise Regression Analysis Dummy model: JW Fitted a gaussian distribution. F(5, 18) = 20.99; p = 0.000; R² = 0.854; Adjusted R² = 0.813 B 2.5% 97.5% SE t p ΔR² Intercept 2.893 1.384 4.402 0.770 3.758 0.001 Trend mt 0.024 -0.275 0.323 0.152 0.156 0.878 0.0002 Level phase B 3.738 1.779 5.698 1.000 3.739 0.002 0.1137 Level phase E -4.524 -6.483 -2.564 1.000 -4.525 0.000 0.1666 Slope phase B -0.012 -0.434 0.411 0.216 -0.055 0.957 0.0000 Slope phase E -0.071 -0.494 0.351 0.216 -0.331 0.744 0.0009 Autocorrelations of the residuals lag cr 1 -0.26 2 -0.20 3 0.25 Formula: values ~ 1 + mt + phaseB + phaseE + interB + interE
Model1: Contrast to phase A | Model2: Contrast to previous phase | |
---|---|---|
Intercept | 2.89 | 2.89 |
Trend | 0.02 | 0.02 |
Level B | 3.74 | 3.74 |
Level E | -0.88 | -4.52 |
Slope B | -0.01 | -0.01 |
Slope E | -0.08 | -0.07 |
\(2.89 + (16 * 0.02) - 0.88 \approx 2.34\)
\(2.89 + (8 * 0.02) + 3.74 + (8 * (0.02 - 0.01)) - 4.52 \approx 2.34\)
Create the following example dataset
case <- scdf( c(A1 = 2,3,1,2,3,2, B1 = 6,6,5,7,7,5, A2 = 3,2,2,3,1,3, B2 = 9,8,9,10,8,9)) plot(case, lines = list("mean", col = "red", lwd = 2))
Drop the slope effect from the model and contrast each phase to the previous one.
plm(case, model = "JW", slope = FALSE)
Piecewise Regression Analysis Dummy model: JW Fitted a gaussian distribution. F(4, 19) = 67.35; p = 0.000; R² = 0.934; Adjusted R² = 0.920 B 2.5% 97.5% SE t p ΔR² Intercept 2.167 1.219 3.114 0.483 4.481 0 Trend mt 0.000 -0.194 0.194 0.099 0.000 1 0.0000 Level phase B1 3.833 2.341 5.326 0.762 5.034 0 0.0879 Level phase A2 -3.667 -5.159 -2.174 0.762 -4.815 0 0.0804 Level phase B2 6.500 5.007 7.993 0.762 8.535 0 0.2526 Autocorrelations of the residuals lag cr 1 -0.47 2 -0.24 3 0.44 Formula: values ~ 1 + mt + phaseB1 + phaseA2 + phaseB2
mt | phase | mood | sleep |
---|---|---|---|
1 | A | 2 | 4 |
2 | A | 3 | 6 |
3 | A | 2 | 5 |
4 | A | 3 | 7 |
5 | A | 1 | 3 |
6 | A | 2 | 5 |
7 | B | 7 | 7 |
8 | B | 6 | 7 |
9 | B | 5 | 6 |
10 | B | 4 | 4 |
11 | B | 5 | 6 |
12 | B | 6 | 5 |
13 | B | 5 | 7 |
14 | B | 8 | 8 |
\(mood_i = \beta_0 + \beta_1 mt_i + \beta_2 phase_i + \beta_3 (mt_i-6) \times phase_i + \beta_4 sleep + \epsilon_i\)
Piecewise Regression Analysis Dummy model: B&L-B Fitted a gaussian distribution. F(3, 10) = 10.80; p = 0.002; R² = 0.764; Adjusted R² = 0.693 B 2.5% 97.5% SE t p ΔR² Intercept 2.667 0.526 4.807 1.092 2.442 0.035 Trend mt -0.143 -0.692 0.407 0.280 -0.509 0.622 0.0061 Level phase B 3.619 1.174 6.064 1.248 2.901 0.016 0.1984 Slope phase B 0.214 -0.440 0.868 0.334 0.642 0.535 0.0097 Autocorrelations of the residuals lag cr 1 -0.05 2 -0.05 3 -0.24 Formula: mood ~ 1 + mt + phaseB + interB
We can update a regression model with the update
argument of the plm
function.
Pleaae execute the following code:
case <- scdf( mood = c(A = 2,3,2,3,1,2, B = 7,6,5,4,5,6,5,8), sleep = c(4,6,5,7,3,5, 7,7,6,4,6,5,7,8), dvar = "mood" ) plm(case, update = .~. + sleep)
Piecewise Regression Analysis Dummy model: B&L-B Fitted a gaussian distribution. F(4, 9) = 21.09; p = 0.000; R² = 0.904; Adjusted R² = 0.861 B 2.5% 97.5% SE t p ΔR² Intercept -0.553 -2.820 1.714 1.157 -0.478 0.644 Trend mt -0.107 -0.478 0.263 0.189 -0.568 0.584 0.0035 Level phase B 2.956 1.269 4.642 0.861 3.434 0.007 0.1263 Slope phase B 0.135 -0.308 0.578 0.226 0.596 0.566 0.0038 sleep 0.619 0.283 0.955 0.172 3.608 0.006 0.1394 Autocorrelations of the residuals lag cr 1 -0.49 2 0.26 3 -0.26 Formula: mood ~ mt + phaseB + interB + sleep
The autocorr()
function takes a lag
argument and provides auto-correlations of the dependent variable for each phase and across all phases.
autocorr(case, lag = 3)
Autocorrelations case phase lag_1 lag_2 lag_3 Autocorr. example A -0.47 0.33 -0.57 Autocorr. example B -0.46 0.50 -0.43 Autocorr. example all 0.08 0.61 -0.10
The plm()
gives information on the autocorrealtion of the residuals up to lag 3
Piecewise Regression Analysis Dummy model: B&L-B Fitted a gaussian distribution. F(3, 14) = 2.89; p = 0.073; R² = 0.383; Adjusted R² = 0.250 B 2.5% 97.5% SE t p ΔR² Intercept 2.036 0.013 4.058 1.032 1.973 0.069 Trend mt -0.036 -0.436 0.365 0.204 -0.175 0.864 0.0013 Level phase B 2.317 -0.123 4.756 1.245 1.861 0.084 0.1527 Slope phase B -0.031 -0.523 0.461 0.251 -0.123 0.904 0.0007 Autocorrelations of the residuals lag cr 1 -0.56 2 0.53 3 -0.57 Formula: values ~ 1 + mt + phaseB + interB
The AR
argument of the plm()
function allows for modeling autocorrelated residuals up to a provided lag.
plm(case)
B | se | t | p | |
---|---|---|---|---|
Intercept | 2.036 | 1.032 | 1.973 | 0.069 |
Trend | -0.036 | 0.204 | -0.175 | 0.864 |
Level B | 2.317 | 1.245 | 1.861 | 0.084 |
Slope B | -0.031 | 0.251 | -0.123 | 0.904 |
plm(case, AR = 3)
B | se | t | p | |
---|---|---|---|---|
Intercept | 2.447 | 0.598 | 4.091 | 0.001 |
Trend | -0.138 | 0.122 | -1.138 | 0.274 |
Level B | 3.044 | 0.753 | 4.045 | 0.001 |
Slope B | 0.027 | 0.136 | 0.200 | 0.844 |
The hplm()
function is an extension of the plm()
function taking many of its parameters and allowing to analyze multiple cases at once:
trend
, level
, and slope
argumentsupdate.fixed
for extending the regression model (fixed part)model
for defining the contrastswith some additional arguments for multilevel models.
Type ?hplm
to open a help page.
Example dataset GruenkeWilbert2014
Replicate the following code to get an overview of the GruenkeWilbert2014
dataset
summary(GruenkeWilbert2014) describeSC(GruenkeWilbert2014)
summary(GruenkeWilbert2014)
#A single-case data frame with 6 cases Measurements Design Anton 18 A B Bob 18 A B Paul 18 A B Robert 18 A B Sam 18 A B Tim 18 A B Variable names: mt <measurement-time variable> score <dependent variable> phase <phase variable> Note: Data from an intervention study on text comprehension. Gruenke, M., Wilbert, J., & Stegemann-Calder, K. (2013). Analyzing the effects of story mapping on the reading comprehension of children with low intellectual abilities. Learning Disabilities: A Contemporary Journal, 11(2), 51-64. Author of data: Matthias Gruenke and Juergen Wilbert
describeSC(GruenkeWilbert2014)
Describe Single-Case Data Design: A B Anton Bob Paul Robert Sam Tim n.A 4 7 6 8 5 4 n.B 14 11 12 10 13 14 mis.A 0 0 0 0 0 0 mis.B 0 0 0 0 0 0 Anton Bob Paul Robert Sam Tim m.A 5.00 3.00 3.83 4.12 4.60 3.00 m.B 9.14 8.82 8.83 8.90 9.08 9.00 md.A 5.00 3.00 4.00 4.00 5.00 3.00 md.B 9.00 9.00 9.00 9.00 9.00 9.00 sd.A 0.82 0.82 0.75 0.83 0.55 0.82 sd.B 0.77 0.87 0.72 0.99 0.86 0.96 mad.A 0.74 1.48 0.74 1.48 0.00 0.74 mad.B 1.48 0.00 0.74 1.48 1.48 1.48 min.A 4.00 2.00 3.00 3.00 4.00 2.00 min.B 8.00 7.00 8.00 7.00 8.00 7.00 max.A 6.00 4.00 5.00 5.00 5.00 4.00 max.B 10.00 10.00 10.00 10.00 10.00 10.00 trend.A -0.40 0.04 -0.26 -0.06 0.10 -0.60 trend.B 0.03 0.04 0.02 -0.14 0.03 0.00 Note. The following variables were used in this analysis: 'score' as dependent variable, 'phase' as phase ,and 'mt' as measurement time.
Hierarchical Piecewise Linear Regression Estimation method ML Slope estimation method: B&L-B 6 Cases ICC = 0.001; L = 0.0; p = 0.953 Fixed effects (score ~ 1 + mt + phaseB + interB) B SE df t p Intercept 4.169 0.260 99 16.042 0.000 Trend mt -0.081 0.059 99 -1.373 0.173 Level phase B 5.208 0.300 99 17.343 0.000 Slope phase B 0.087 0.062 99 1.393 0.167 Random effects (~1 | case) EstimateSD Intercept 0.149 Residual 0.866
Example dataset Leidig2018
35 cases with up to 108 measurements (AB-Design, effect of a “good behavior game” on academic engagement and disruptive behavior)
Hierarchical Piecewise Linear Regression Estimation method ML Slope estimation method: B&L-B 35 Cases ICC = 0.344; L = 875.4; p = 0.000 Fixed effects (academic_engagement ~ 1 + mt + phaseB + interB) B SE df t p Intercept 3.042 0.125 2376 24.281 0.000 Trend mt -0.004 0.004 2376 -0.966 0.334 Level phase B 0.730 0.067 2376 10.823 0.000 Slope phase B 0.008 0.004 2376 2.095 0.036 Random effects (~1 | case) EstimateSD Intercept 0.680 Residual 0.784
Hierarchical Piecewise Linear Regression Estimation method ML Slope estimation method: B&L-B 35 Cases ICC = 0.311; L = 759.2; p = 0.000 Fixed effects (disruptive_behavior ~ 1 + mt + phaseB + interB) B SE df t p Intercept 1.267 0.098 2349 12.927 0 Trend mt 0.024 0.003 2349 7.689 0 Level phase B -1.327 0.056 2349 -23.606 0 Slope phase B -0.025 0.003 2349 -7.802 0 Random effects (~1 | case) EstimateSD Intercept 0.525 Residual 0.655
Take the Leidig2018
dataset and calculate an hplm
model.
Choose disruptive_behavior
as the dependent variable (dvar = "disruptive_behavior"
)
Add random slopes to the regression model (random.slopes = TRUE
) and likelihood ratio tests (lr.test = TRUE
)
Hierarchical Piecewise Linear Regression Estimation method ML Slope estimation method: B&L-B 35 Cases ICC = 0.311; L = 759.2; p = 0.000 Fixed effects (disruptive_behavior ~ 1 + mt + phaseB + interB) B SE df t p Intercept 1.493 0.128 2349 11.631 0.000 Trend mt 0.014 0.004 2349 3.189 0.001 Level phase B -1.286 0.147 2349 -8.764 0.000 Slope phase B -0.013 0.004 2349 -3.175 0.002 Random effects (~1 + mt + phaseB + interB | case) EstimateSD L df p Intercept 0.710 210.92 4 0.000 Trend mt 0.015 12.90 4 0.012 Level phase B 0.810 138.84 4 0.000 Slope phase B 0.015 10.43 4 0.034 Residual 0.592 NA NA NA
We found a significant variance in the slope and the level effects between subjects
Can we explain these differences by means of attributes of the indivudals?
The Leidig2018
dataset has an accompanying dataset with information on each subject Leidig2018_l2
:
class, case, gender, migration, first_language_german, SDQ_TOTAL, SDQ_EXTERNALIZING, SDQ_INTERNALIZING, ITRF_TOTAL, ITRF_ACADEMIC, ITRF_BEHAVIOR
class | case | gender | migration | first_language_german | SDQ_TOTAL | SDQ_EXTERNALIZING | SDQ_INTERNALIZING | ITRF_TOTAL | ITRF_ACADEMIC | ITRF_BEHAVIOR |
---|---|---|---|---|---|---|---|---|---|---|
1a | 1a1 | 0 | 0 | 1 | 10 | 9 | 1 | 11 | 7 | 4 |
1a | 1a2 | 0 | 0 | 1 | 11 | 11 | 0 | 21 | 10 | 11 |
1a | 1a3 | 1 | 0 | 1 | 6 | 6 | 0 | 18 | 1 | 17 |
1a | 1a4 | 0 | 1 | 1 | 8 | 5 | 3 | 14 | 7 | 7 |
1a | 1a5 | 0 | 1 | 1 | 8 | 7 | 1 | 13 | 4 | 9 |
2a | 2a1 | 0 | 1 | 0 | 9 | 8 | 1 | 9 | 2 | 7 |
2a | 2a2 | 0 | 1 | 0 | 7 | 4 | 3 | 16 | 16 | 0 |
2a | 2a3 | 0 | 1 | 0 | 16 | 13 | 3 | 23 | 14 | 9 |
hplm()
functioncase
with the casenames/id.data.l2
argument is set accoding to the name of the l2 dataset.
hplm(Leidig2018, data.l2 = Leidig2018_l2)
update.fixed
argument must be set to include the l2 variables of interest.
hplm(Leidig2018, data.l2 = Leidig2018_l2, update.fixed = .~. + SDQ_EXTERNALIZING * phaseB)
What effect does externalizing behavior have on the intervention strength on disruptive behavior?
Code and execute the following model.
Note: the scale
function is needed to center the predictor variable (necessary in multilevel models)
hplm( Leidig2018, data.l2 = Leidig2018_l2, update.fixed = .~. + scale(SDQ_EXTERNALIZING) * phaseB + scale(SDQ_EXTERNALIZING) * interB, dvar = "disruptive_behavior" )
Hierarchical Piecewise Linear Regression Estimation method ML Slope estimation method: B&L-B 35 Cases ICC = 0.311; L = 759.2; p = 0.000 Fixed effects (disruptive_behavior ~ mt + phaseB + interB + scale(SDQ_EXTERNALIZING) + phaseB:scale(SDQ_EXTERNALIZING) + interB:scale(SDQ_EXTERNALIZING)) B SE df t p Intercept 1.319 0.095 2347 13.951 0.000 Trend mt 0.020 0.003 2347 6.375 0.000 Level phase B -1.306 0.056 2347 -23.457 0.000 Slope phase B -0.020 0.003 2347 -6.396 0.000 scale(SDQ_EXTERNALIZING) 0.307 0.090 33 3.397 0.002 Level phase B:scale(SDQ_EXTERNALIZING) -0.202 0.043 2347 -4.702 0.000 Slope phase B:scale(SDQ_EXTERNALIZING) -0.001 0.001 2347 -2.522 0.012 Random effects (~1 | case) EstimateSD Intercept 0.501 Residual 0.647
Future developments of scan