merge_multilevel.Rd
Merges two data frames with different levels to create a single data frame
Level 1 data frame containing data to merge
Level 2 data frame containing data to merge
String with variable name for matching datasets
Vector with strings of L1 variables that are aggregated at
Level2 with the agg_func
function.
A character vector of suffixes for the merged Level 2 columns (default: c('.l1', '.l2'))
A character vector of suffixes for the merged aggregated columns (default: c(”, '.mean'))
The function used in aggregation (default: function(x) mean(x, na.rm = TRUE))
Returns a merged data frame
merge_multilevel(mtcars, var_agg = c("mpg", "disp"), id = "cyl")
#> cyl mpg disp hp drat wt qsec vs am gear carb mpg.mean disp.mean
#> 1 4 22.8 140.8 95 3.92 3.150 22.90 1 0 4 2 26.66364 105.1364
#> 2 4 22.8 108.0 93 3.85 2.320 18.61 1 1 4 1 26.66364 105.1364
#> 3 4 24.4 146.7 62 3.69 3.190 20.00 1 0 4 2 26.66364 105.1364
#> 4 4 21.5 120.1 97 3.70 2.465 20.01 1 0 3 1 26.66364 105.1364
#> 5 4 30.4 75.7 52 4.93 1.615 18.52 1 1 4 2 26.66364 105.1364
#> 6 4 33.9 71.1 65 4.22 1.835 19.90 1 1 4 1 26.66364 105.1364
#> 7 4 26.0 120.3 91 4.43 2.140 16.70 0 1 5 2 26.66364 105.1364
#> 8 4 30.4 95.1 113 3.77 1.513 16.90 1 1 5 2 26.66364 105.1364
#> 9 4 32.4 78.7 66 4.08 2.200 19.47 1 1 4 1 26.66364 105.1364
#> 10 4 21.4 121.0 109 4.11 2.780 18.60 1 1 4 2 26.66364 105.1364
#> 11 4 27.3 79.0 66 4.08 1.935 18.90 1 1 4 1 26.66364 105.1364
#> 12 6 21.0 160.0 110 3.90 2.620 16.46 0 1 4 4 19.74286 183.3143
#> 13 6 21.0 160.0 110 3.90 2.875 17.02 0 1 4 4 19.74286 183.3143
#> 14 6 17.8 167.6 123 3.92 3.440 18.90 1 0 4 4 19.74286 183.3143
#> 15 6 21.4 258.0 110 3.08 3.215 19.44 1 0 3 1 19.74286 183.3143
#> 16 6 18.1 225.0 105 2.76 3.460 20.22 1 0 3 1 19.74286 183.3143
#> 17 6 19.2 167.6 123 3.92 3.440 18.30 1 0 4 4 19.74286 183.3143
#> 18 6 19.7 145.0 175 3.62 2.770 15.50 0 1 5 6 19.74286 183.3143
#> 19 8 18.7 360.0 175 3.15 3.440 17.02 0 0 3 2 15.10000 353.1000
#> 20 8 17.3 275.8 180 3.07 3.730 17.60 0 0 3 3 15.10000 353.1000
#> 21 8 14.3 360.0 245 3.21 3.570 15.84 0 0 3 4 15.10000 353.1000
#> 22 8 14.7 440.0 230 3.23 5.345 17.42 0 0 3 4 15.10000 353.1000
#> 23 8 10.4 472.0 205 2.93 5.250 17.98 0 0 3 4 15.10000 353.1000
#> 24 8 16.4 275.8 180 3.07 4.070 17.40 0 0 3 3 15.10000 353.1000
#> 25 8 19.2 400.0 175 3.08 3.845 17.05 0 0 3 2 15.10000 353.1000
#> 26 8 15.2 275.8 180 3.07 3.780 18.00 0 0 3 3 15.10000 353.1000
#> 27 8 15.2 304.0 150 3.15 3.435 17.30 0 0 3 2 15.10000 353.1000
#> 28 8 10.4 460.0 215 3.00 5.424 17.82 0 0 3 4 15.10000 353.1000
#> 29 8 15.8 351.0 264 4.22 3.170 14.50 0 1 5 4 15.10000 353.1000
#> 30 8 15.5 318.0 150 2.76 3.520 16.87 0 0 3 2 15.10000 353.1000
#> 31 8 15.0 301.0 335 3.54 3.570 14.60 0 1 5 8 15.10000 353.1000
#> 32 8 13.3 350.0 245 3.73 3.840 15.41 0 0 3 4 15.10000 353.1000