ci_score()
: Returns confidence intervals for test scores.critical_difference()
: Returns critical difference for test scores.nice_contingency_table()
: Creates a nicely formatted contingency table with one or more summary functions.create_data_description()
: Creates a README.md
file with a data description.nice_frequencies()
: Now has a grouping
argument. This allows creating contingency tables (e.g. nice_frequencies(mtcars$cyl, mtcars$am)
).nice_table()
:
markdown
. If TRUE
, interprets cell content as markdown.nice_regression_table()
, nice_efa()
, and a default method for data.frame
objects.rownames = NULL
now automatically shows row names unless they are as.character(1:nrow(x))
.sort
allows sorting by a character vector.nice_regression_table()
: Now supports gls
models.nice_efa()
: now works for one factor solutions.nice_frequencies()
: Provides HTML and Word tables for the frequency distribution of a variable.nice_sem()
: Provides HTML and Word tables for lavaan
SEM objects.nice_regression_table()
: Provides HTML and Word tables for lm
, lme
, lmerTest
, or glmer
models.round_numeric()
: Rounds numeric columns in a data frame to a specified number of digits.logit2prob()
/ prob2logit()
: Convert between logit and probability.add_label()
: Adds haven labels. Accepts a list input, e.g., mtcars <- add_label(mtcars, list(cyl = "cylind", mpg = "Miles"))
.get_labels()
: Retrieves haven labels.nice_loadings()
: Extracts loadings from a psych::fa
object.nice_efa()
: Returns a formatted table from a psych::fa
object.nice_agreement_table()
: Returns a formatted table for agreement analyses.flip()
: Flips a data frame or matrix, e.g., flip(mtcars, rownames = TRUE)
.change_values()
: Recodes values using formula syntax, e.g., change_values(c(1, 2, 3), 2 ~ "two", 3 ~ "three")
.percentage_bar()
: Creates a ggplot percentage bar, e.g., percentage_bar(20, "test")
.nice_table()
: Now defaults to gt
tables; the older kable
output is being retired.fill_missing_l2()
: Fills in missing values in multilevel/repeated measurement long format data. Useful for level-2 variables like gender that may only appear in one measurement occasion.chi_test_table()
: Compares the proportions of a dichotomous variable across two groups for multiple variables. Similar to t_test_table()
but for categorical variables.t_test_table()
: Added arguments caption
, bootstrap_options
, and full_width
.alpha_table()
:
VAR
renamed to scales
.difficulty
: If TRUE
, reports item difficulties.values
: Required for calculating item difficulty; specify min and max values for each scale.