Create a nice table from one or more regression models

nice_regression_table(
  ...,
  round = 2,
  labels_models = NULL,
  rename_labels = list(),
  rename_cols = list(),
  remove_cols = NULL,
  auto_col_names = TRUE,
  file = NULL,
  or = FALSE,
  nice_p = TRUE,
  title = "Regression model",
  footnote = NULL
)

Arguments

remove_cols

Either column number or column names to be removed

or

If TRUE, the estimators are assumed to be logits and are exponentiated to yield odds ratios

Examples

lm(mpg ~ am + disp + hp, data = mtcars) |> 
  nice_regression_table()
Table
Regression model
Predictor
mpg
Estimate SE t p
(Intercept) 27.87 1.62 17.2 <.001***
am 3.8 1.42 2.67 .013*
disp -0.01 0.01 -1.55 .133
hp -0.04 0.01 -3.03 .005**
Model
0.8


R² adjusted 0.78


Observations 32


nice_regression_table( nlme::lme(mpg~disp, data = mtcars, random = ~1|am), nlme::lme(mpg~disp + hp, data = mtcars, random = ~1|am) )
Table
Regression model
Predictor
mpg
mpg 1
Estimate SE DF t p-value Estimate SE DF t p-value
(Intercept) 29.28 1.4 29 20.85 <.001*** 29.9 2.16 28 13.83 <.001***
disp -0.04 0.01 29 -7.71 <.001*** -0.02 0.01 28 -1.86 .073
hp




-0.04 0.01 28 -2.9 .007**
Model
(Intercept) am 0.65



6.19



Residual 10.35



8.08



ICC 0.06



0.43



N am 2



2



R² Conditional 0.7



0.76



R² Marginal 0.69



0.58



Observations 32



32



nice_regression_table( wmisc:::model_lmer_1, wmisc:::model_lmer_2, rename_labels = list( "EffectTrend" = "Trend", "EffectSlope" = "Slope", "TimePost" = "Post", "ConditionTraining" = "Training", "id_subject" = "Subject"), rename_cols = list("Estimate" = "B", "SE" = "se"), labels_models = c("Only pretest", "Pre- and posttest") ) #> Loading required namespace: lmerTest
Table
Regression model
Predictor
Only pretest
Pre- and posttest
B se df t p B se df t p
(Intercept) -0.07 0.06 192.42 -1.1 .273 -0.05 0.09 224.18 -0.51 .610
Trend -0.11 0.06 300 -2.03 .043* -0.2 0.08 484.83 -2.6 .010**
Slope -0.33 0.06 300 -5.81 <.001*** -0.43 0.08 484.83 -5.6 <.001***
Trend & Slope 0.76 0.06 300 13.47 <.001*** 0.78 0.08 484.83 10.17 <.001***
Post




-0.15 0.07 240.04 -2.02 .044*
Training




-0.04 0.12 224.18 -0.31 .758
Post:Training




0.16 0.1 240.04 1.69 .091
Post:Trend




0.24 0.07 7569.02 3.29 .001**
Post:Slope




0.16 0.07 7569.02 2.28 .023*
Post:Trend & Slope




0.07 0.07 7569.02 0.97 .332
Training:Trend




0.15 0.1 484.83 1.46 .144
Training:Slope




0.18 0.1 484.83 1.74 .083
Training:Trend & Slope




-0.03 0.1 484.83 -0.33 .740
Post:Training:Trend




-0.26 0.09 7569.02 -2.71 .007**
Post:Training:Slope




0.01 0.09 7569.02 0.07 .940
Post:Training:Trend & Slope




-0.33 0.09 7569.02 -3.51 <.001***
Model
(Intercept) Subject 0.24



0.19



(Intercept) Subject:Effect 0.11



0.07



(Intercept) Subject:Time




0.06



Residual 0.55



0.55



ICC 0.39



0.37



N Subject 101



101



N Effect 4



4



N Time




2



R² Conditional 0.48



0.45



R² Marginal 0.16



0.14



Observations 4040



8080