Skip to contents

The describe() function provides common descriptive statistics for single-case data.

Usage

describe(data, dvar, pvar, mvar)

Arguments

data

A single-case data frame. See scdf() to learn about this format.

dvar

Character string with the name of the dependent variable. Defaults to the attributes in the scdf file.

pvar

Character string with the name of the phase variable. Defaults to the attributes in the scdf file.

mvar

Character string with the name of the measurement time variable. Defaults to the attributes in the scdf file.

Value

A list containing a data frame of descriptive statistics (descriptives); the cse design (design); the number of cases (N)

Details

n = number of measurements; mis = number of missing vaues; m = mean; md = median; sd = standard deviation; mad = median average deviation; min = minimum; max = maximum; trend = weight of depended variable regressed on time (values ~ mt).

Author

Juergen Wilbert

Examples


## Descriptive statistics for a study of three single-cases
describe(Grosche2011)
#> Describe Single-Case Data
#> 
#>        Eva Georg Olaf
#> Design A-B   A-B  A-B
#> n.A      6     7   12
#> n.B     13    17    8
#> mis.A    0     0    0
#> mis.B    0     0    0
#> 
#>            Eva  Georg   Olaf
#> m.A      2.677 10.469  6.036
#> m.B      3.435  9.799  5.995
#> md.A     2.945  8.820  6.355
#> md.B     3.310 10.590  5.905
#> sd.A     0.750  4.112  1.524
#> sd.B     1.029  2.089  1.225
#> mad.A    0.541  4.448  1.794
#> mad.B    1.290  2.090  1.416
#> min.A     1.46   5.82   3.02
#> min.B     1.86   5.60   4.53
#> max.A     3.39  17.40   7.69
#> max.B     4.98  12.79   8.14
#> trend.A  0.014 -0.268  0.007
#> trend.B  0.044  0.043  0.000

## Descriptives of a three phase design
describe(exampleABC)
#> Describe Single-Case Data
#> 
#>        Marie Rosalind  Lise
#> Design A-B-C    A-B-C A-B-C
#> n.A       10       15    20
#> n.B       10        8     7
#> n.C       10        7     3
#> mis.A      0        0     0
#> mis.B      0        0     0
#> mis.C      0        0     0
#> 
#>           Marie Rosalind    Lise
#> m.A      52.000   52.267  52.350
#> m.B      72.100   73.250  73.571
#> m.C      68.000   66.429  71.333
#> md.A       53.5     52.0    52.0
#> md.B       72.5     72.0    73.0
#> md.C         69       68      76
#> sd.A      8.287    8.146  10.869
#> sd.B     11.367   13.134  10.644
#> sd.C     12.702   10.486  21.385
#> mad.A    11.119    7.413  10.378
#> mad.B    10.378   10.378  16.309
#> mad.C    17.791   11.861  20.756
#> min.A        39       37      35
#> min.B        47       54      60
#> min.C        51       52      48
#> max.A        63       65      74
#> max.B        85       97      87
#> max.C        87       78      90
#> trend.A  -1.915    0.500  -0.088
#> trend.B  -0.612    0.643   1.929
#> trend.C  -0.194   -2.929 -14.000

## Write descriptive statistics to .csv-file
study <- describe(Waddell2011)
write.csv(study$descriptives, file = tempfile())