
Package index
-
scdf() - Single case data frame
-
add_l2() - Add level-2 data
-
as_scdf() - as_scdf
-
as.data.frame(<scdf>) - Creating a long format data frame from several single-case data frames (scdf).
-
add_dummy_variables() - Add Dummy Variables for Piecewise Linear Models
-
na.omit(<scdf>) - scdf objects Removes any row with a missing value
-
fetch() - Fetches elements from scan objects Getter function for scan objects
-
coef(<sc_plm>) - Extract coefficients from plm/hplm objects
-
hplm()print(<sc_hplm>)export(<sc_hplm>)coef(<sc_hplm>) - Hierarchical piecewise linear model / piecewise regression
-
fill_missing() - Replacing missing measurement times in single-case data
-
sample_names() - Samples random names
-
select_cases() - Select a subset of cases
-
select_phases() - Select and combine phases for overlap analyses
-
set_vars()set_dvar()set_mvar()set_pvar() - Set analysis variables in an scdf
-
subset(<scdf>) - Subset cases, rows, and variables
-
moving_median()moving_mean()local_regression()set_na_at()center_at()first_of()across_cases()all_cases()rowwise()transform(<scdf>) - Transform every single case of a single case data frame
-
rescale() - Rescales values of an scdf file
-
is.scdf() - scdf objects Tests for objects of type "scdf"
-
shinyscan() - A Shiny app for scan
-
import_scdf() - Import scdf – RStudio Addin
-
anova(<sc_plm>)anova(<sc_hplm>)anova(<sc_mplm>) - ANOVA Table for Piecewise Linear Models
-
autocorr() - Autocorrelation for single-case data
-
batch_apply() - Apply a function to each element in an scdf.
-
cdc() - Conservative Dual-Criterion Method
-
corrected_tau() - Baseline corrected tau
-
describe() - Descriptive statistics for single-case data
-
hplm()print(<sc_hplm>)export(<sc_hplm>)coef(<sc_hplm>) - Hierarchical piecewise linear model / piecewise regression
-
mplm()print(<sc_mplm>)export(<sc_mplm>) - Multivariate Piecewise linear model / piecewise regression
-
bplm()print(<sc_bplm>)export(<sc_bplm>) - Bayesian Piecewise Linear Model
-
nap() - Nonoverlap of all Pairs
-
outlier() - Handling outliers in single-case data
-
overlap() - Overlap indices for single-case data
-
ird()print(<sc_ird>) - IRD - Improvement rate difference
-
pand()print(<sc_pand>)export(<sc_pand>) - Percentage of all non-overlapping data
-
pem() - Percent exceeding the median
-
pet() - Percent exceeding the trend
-
plm()print(<sc_plm>)export(<sc_plm>) - Piecewise linear model / piecewise regression
-
pnd() - Percentage of non-overlapping data
-
power_test() - Empirical power analysis for single-case data
-
rand_test() - Randomization Tests for single-case data
-
rci() - Reliable change index
-
smd() - Standardized mean differences
-
between_smd()print(<sc_bcsmd>)export(<sc_bcsmd>) - Between-Case Standardized Mean Difference
-
tau_u()print(<sc_tauu>)export(<sc_tauu>) - Tau-U for single-case data
-
trend() - Trend analysis for single-cases data
-
between_smd()print(<sc_bcsmd>)export(<sc_bcsmd>) - Between-Case Standardized Mean Difference
-
bplm()print(<sc_bplm>)export(<sc_bplm>) - Bayesian Piecewise Linear Model
-
export() - Export scan objects to html or latex
-
hplm()print(<sc_hplm>)export(<sc_hplm>)coef(<sc_hplm>) - Hierarchical piecewise linear model / piecewise regression
-
mplm()print(<sc_mplm>)export(<sc_mplm>) - Multivariate Piecewise linear model / piecewise regression
-
pand()print(<sc_pand>)export(<sc_pand>) - Percentage of all non-overlapping data
-
plm()print(<sc_plm>)export(<sc_plm>) - Piecewise linear model / piecewise regression
-
tau_u()print(<sc_tauu>)export(<sc_tauu>) - Tau-U for single-case data
-
ird()print(<sc_ird>) - IRD - Improvement rate difference
-
print(<scdf>) - Print an scdf
-
plot(<scdf>)plotSC() - (Deprecated) Plot single-case data
-
style_plot() - (Deprecated) Create styles for single-case data plots
-
plot_rand() - Plot random distribution
-
summary(<scdf>) - Summary function for an scdf
-
design() - Generate a single-case design matrix
-
estimate_design() - Estimate single-case design
-
random_scdf() - Single-case data generator