Function reference
-
scdf()
- Single case data frame
-
add_l2()
- Add level-2 data
-
as_scdf()
- as_scdf
-
as.data.frame(<scdf>)
- Creating a long format data frame from several single-case data frames (scdf).
-
na.omit(<scdf>)
- scdf objects Removes any row with a missing value
-
coef(<sc_plm>)
- Extract coefficients from plm/hplm objects
-
hplm()
print(<sc_hplm>)
export(<sc_hplm>)
coef(<sc_hplm>)
- Hierarchical piecewise linear model / piecewise regression
-
fill_missing()
- Replacing missing measurement times in single-case data
-
sample_names()
- Samples random names
-
select_cases()
- Select a subset of cases
-
select_phases()
- Select and combine phases for overlap analyses
-
set_vars()
set_dvar()
set_mvar()
set_pvar()
- Set analysis variables in an scdf
-
subset(<scdf>)
- Subset cases, rows, and variables
-
moving_median()
moving_mean()
local_regression()
first_of()
across_cases()
all_cases()
transform(<scdf>)
- Transform every single case of a single case data frame
-
rescale()
- Rescales values of an scdf file
-
is.scdf()
- scdf objects Tests for objects of type "scdf"
-
shinyscan()
- A Shiny app for scan
-
autocorr()
- Autocorrelation for single-case data
-
batch_apply()
- Apply a function to each element in an scdf.
-
cdc()
- Conservative Dual-Criterion Method
-
corrected_tau()
- Baseline corrected tau
-
describe()
- Descriptive statistics for single-case data
-
hplm()
print(<sc_hplm>)
export(<sc_hplm>)
coef(<sc_hplm>)
- Hierarchical piecewise linear model / piecewise regression
-
mplm()
print(<sc_mplm>)
- Multivariate Piecewise linear model / piecewise regression
-
nap()
- Nonoverlap of all Pairs
-
outlier()
- Handling outliers in single-case data
-
overlap()
- Overlap indices for single-case data
-
ird()
print(<sc_ird>)
- IRD - Improvement rate difference
-
pand()
print(<sc_pand>)
export(<sc_pand>)
- Percentage of all non-overlapping data
-
pem()
- Percent exceeding the median
-
pet()
- Percent exceeding the trend
-
plm()
- Piecewise linear model / piecewise regression
-
pnd()
- Percentage of non-overlapping data
-
power_test()
- Empirical power analysis for single-case data
-
rand_test()
- Randomization Tests for single-case data
-
rci()
- Reliable change index
-
smd()
- Standardized mean differences
-
between_smd()
print(<sc_bcsmd>)
- Between-Case Standardized Mean Difference
-
tau_u()
print(<sc_tauu>)
export(<sc_tauu>)
- Tau-U for single-case data
-
trend()
- Trend analysis for single-cases data
-
export()
- Export scan objects to html or latex
-
hplm()
print(<sc_hplm>)
export(<sc_hplm>)
coef(<sc_hplm>)
- Hierarchical piecewise linear model / piecewise regression
-
pand()
print(<sc_pand>)
export(<sc_pand>)
- Percentage of all non-overlapping data
-
tau_u()
print(<sc_tauu>)
export(<sc_tauu>)
- Tau-U for single-case data
-
between_smd()
print(<sc_bcsmd>)
- Between-Case Standardized Mean Difference
-
ird()
print(<sc_ird>)
- IRD - Improvement rate difference
-
mplm()
print(<sc_mplm>)
- Multivariate Piecewise linear model / piecewise regression
-
print(<scdf>)
- Print an scdf
-
plot(<scdf>)
plotSC()
- (Deprecated) Plot single-case data
-
style_plot()
- (Deprecated) Create styles for single-case data plots
-
plot_rand()
- Plot random distribution
-
summary(<scdf>)
- Summary function for an scdf
-
design()
- Generate a single-case design matrix
-
estimate_design()
- Estimate single-case design
-
random_scdf()
- Single-case data generator