Computes a bayesian (hierarchical) piecewise linear model based on a Markov chain Monte Carlo sampler.
Usage
bplm(
data,
dvar,
pvar,
mvar,
model = c("W", "H-M", "B&L-B"),
contrast_level = c("first", "preceding"),
contrast_slope = c("first", "preceding"),
trend = TRUE,
level = TRUE,
slope = TRUE,
random_trend = FALSE,
random_level = FALSE,
random_slope = FALSE,
fixed = NULL,
random = NULL,
update_fixed = NULL,
...
)
# S3 method for class 'sc_bplm'
print(x, digits = 3, ...)
# S3 method for class 'sc_bplm'
export(
object,
caption = NA,
footnote = NA,
filename = NA,
kable_styling_options = list(),
kable_options = list(),
round = 2,
nice = TRUE,
...
)
Arguments
- data
A single-case data frame. See
scdf()
to learn about this format.- dvar
Character string with the name of the dependent variable. Defaults to the attributes in the scdf file.
- pvar
Character string with the name of the phase variable. Defaults to the attributes in the scdf file.
- mvar
Character string with the name of the measurement time variable. Defaults to the attributes in the scdf file.
- model
Model used for calculating the dummy parameters (see Huitema & McKean, 2000). Default is
model = "W"
. Possible values are:"B&L-B"
,"H-M"
,"W"
, and deprecated"JW"
.- contrast_level
Either "first", "preceding" or a contrast matrix. If NA contrast_level is a copy of contrast.
- contrast_slope
Either "first", "preceding" or a contrast matrix. If NA contrast_level is a copy of contrast.
- trend
A logical indicating if a trend parameters is included in the model.
- level
A logical indicating if a level parameters is included in the model.
- slope
A logical indicating if a slope parameters is included in the model.
- random_trend
If TRUE, includes a random trend effect.
- random_level
If TRUE, includes a random level effect.
- random_slope
If TRUE, includes a random slope effect.
- fixed
A formula that overwrites the automatically created fixed part of the regression model that defaults to the standard piecewise regression model. The parameter phase followed by the phase name (e.g., phaseB) indicates the level effect of the corresponding phase. The parameter 'inter' followed by the phase name (e.g., interB) adresses the slope effect based on the method provide in the model argument (e.g., "B&L-B"). The formula can be changed for example to include further L1 or L2 variables into the regression model.
- random
A formula that overwrites the automatically created random part of the regression model.
- update_fixed
An easier way to change the fixed model part (e.g.,
. ~ . + newvariable
).- ...
Further arguments passed to the mcmcglmm function.
- x
An object returned by
bplm()
- digits
The minimum number of significant digits to be use. If set to "auto" (default), values are predefined.
- object
An scdf or an object exported from a scan function.
- caption
Character string with table caption. If left NA (default) a caption will be created based on the exported object.
- footnote
Character string with table footnote. If left NA (default) a footnote will be created based on the exported object.
- filename
String containing the file name. If a filename is given the output will be written to that file.
- kable_styling_options
list with arguments passed to the kable_styling function.
- kable_options
list with arguments passed to the kable function.
- round
Integer passed to the digits argument internally used to round values.
- nice
If set TRUE (default) output values are rounded and optimized for publication tables.
Value
An object of class sc_bplm
.
model | List containing information about the applied model. |
N | Number of single-cases. |
formula | A list containing the fixed and the random formulas of the hplm model. |
mcmglmm | Object of class MCMglmm. |
contrast | List with contrast definitions. |
Functions
print(sc_bplm)
: Print resultsexport(sc_bplm)
: Export results as html table (seeexport()
)
Examples
# plm regression
bplm(example_A24)
#> Bayesian Piecewise Linear Regression
#>
#> Contrast model: W (level: first, slope: first)
#> Deviance Information Criterion: 221.87
#>
#> B-structure - Fixed effects (injuries ~ 1 + year + phaseB + interB)
#>
#> B lower 95% CI upper 95% CI sample size p
#> Intercept 258.493 225.124 300.038 1192.152 0.001
#> Trend (year) 2.032 -7.538 12.150 1000.000 0.666
#> Level phase B (phaseB) -150.934 -206.970 -104.339 1107.750 0.001
#> Slope phase B (interB) -1.965 -11.167 9.533 1000.000 0.704
#>
#> R-Structure - Residuals
#>
#> SD lower 95% CI upper 95% CI
#> 28.059 19.024 37.313
# Multilevel plm regression with random intercept
bplm(exampleAB_50, nitt = 5000)
#> Bayesian Piecewise Linear Regression
#>
#> Contrast model: W (level: first, slope: first)
#> 50 Cases
#>
#> Deviance Information Criterion: 8574.425
#>
#> B-structure - Fixed effects (values ~ 1 + mt + phaseB + interB)
#>
#> B lower 95% CI upper 95% CI sample size p
#> Intercept 48.444 45.747 51.379 200.000 0.005
#> Trend (mt) 0.586 0.365 0.799 200.000 0.005
#> Level phase B (phaseB) 14.004 12.886 15.080 198.408 0.005
#> Slope phase B (interB) 0.896 0.668 1.101 200.000 0.005
#>
#> G-Structure - Random effects (~case)
#>
#> Parameter SD lower 95% CI upper 95% CI
#> Intercept 10.312 8.365 12.532
#>
#> R-Structure - Residuals
#>
#> SD lower 95% CI upper 95% CI
#> 5.293 5.069 5.488
# Adding a random slope
bplm(exampleAB_50, random_level = TRUE, nitt = 5000)
#> Bayesian Piecewise Linear Regression
#>
#> Contrast model: W (level: first, slope: first)
#> 50 Cases
#>
#> Deviance Information Criterion: 8459.847
#>
#> B-structure - Fixed effects (values ~ 1 + mt + phaseB + interB)
#>
#> B lower 95% CI upper 95% CI sample size p
#> Intercept 48.249 45.233 50.582 200 0.005
#> Trend (mt) 0.635 0.441 0.899 200 0.005
#> Level phase B (phaseB) 13.813 11.856 15.178 200 0.005
#> Slope phase B (interB) 0.852 0.592 1.035 200 0.005
#>
#> G-Structure - Random effects (~us(1 + phaseB):case)
#>
#> Parameter SD lower 95% CI upper 95% CI
#> Intercept 9.778 8.105 11.397
#> Level phase B (phaseB) 3.985 2.900 5.059
#>
#> Correlation
#> Parameter Correlation lower 95% CI upper 95% CI
#> Intercept:Level phase B (phaseB) 0.086 -0.203 0.498
#>
#> R-Structure - Residuals
#>
#> SD lower 95% CI upper 95% CI
#> 5.017 4.811 5.177