Skip to contents

The hplm() function computes a hierarchical piecewise regression model.

Usage

hplm(
  data,
  dvar,
  pvar,
  mvar,
  model = c("W", "H-M", "B&L-B", "JW"),
  contrast = c("first", "preceding"),
  contrast_level = NA,
  contrast_slope = NA,
  method = c("ML", "REML"),
  control = list(opt = "optim"),
  random.slopes = FALSE,
  lr.test = FALSE,
  ICC = TRUE,
  trend = TRUE,
  level = TRUE,
  slope = TRUE,
  random_trend = FALSE,
  random_level = FALSE,
  random_slope = FALSE,
  fixed = NULL,
  random = NULL,
  update.fixed = NULL,
  data.l2 = NULL,
  ...
)

# S3 method for sc_hplm
print(x, ..., smd = FALSE, casewise = FALSE)

# S3 method for sc_hplm
export(
  object,
  caption = NA,
  footnote = NA,
  filename = NA,
  kable_styling_options = list(),
  kable_options = list(),
  round = 2,
  nice = TRUE,
  casewise = FALSE,
  ...
)

# S3 method for sc_hplm
coef(object, casewise = FALSE, ...)

Arguments

data

A single-case data frame. See scdf() to learn about this format.

dvar

Character string with the name of the dependent variable. Defaults to the attributes in the scdf file.

pvar

Character string with the name of the phase variable. Defaults to the attributes in the scdf file.

mvar

Character string with the name of the measurement time variable. Defaults to the attributes in the scdf file.

model

Model used for calculating the dummy parameters (see Huitema & McKean, 2000). Default is model = "W". Possible values are: "B&L-B", "H-M", "W", and deprecated "JW".

contrast

Sets contrast_level and contrast_slope. Either "first", "preceding" or a contrast matrix.

contrast_level

Either "first", "preceding" or a contrast matrix. If NA contrast_level is a copy of contrast.

contrast_slope

Either "first", "preceding" or a contrast matrix. If NA contrast_level is a copy of contrast.

method

Method used to fit your model. Pass "REML" to maximize the restricted log-likelihood or "ML" for maximized log-likelihood. Default is "ML".

control

A list of settings for the estimation algorithm, replacing the default values passed to the function lmeControl of the nlme package.

random.slopes

If random.slopes = TRUE random slope effects of the level, trend, and treatment parameter are estimated.

lr.test

If set TRUE likelihood ratio tests are calculated comparing model with vs. without random slope parameters.

ICC

If ICC = TRUE an intraclass-correlation is estimated.

trend

A logical indicating if a trend parameters is included in the model.

level

A logical indicating if a level parameters is included in the model.

slope

A logical indicating if a slope parameters is included in the model.

random_trend

If TRUE, includes a random trend trend effect.

random_level

If TRUE, includes a random level trend effect.

random_slope

If TRUE, includes a random slope trend effect.

fixed

Defaults to the fixed part of the standard piecewise regression model. The parameter phase followed by the phase name (e.g., phaseB) indicates the level effect of the corresponding phase. The parameter 'inter' followed by the phase name (e.g., interB) adresses the slope effect based on the method provide in the model argument (e.g., "B&L-B"). The formula can be changed for example to include further L1 or L2 variables into the regression model.

random

The random part of the model.

update.fixed

An easier way to change the fixed model part (e.g., . ~ . + newvariable).

data.l2

A dataframe providing additional variables at Level 2. The scdf File has to have names for all cases and the Level 2 dataframe has to have a column named 'cases' with the names of the cases the Level 2 variables belong to.

...

Further arguments passed to the lme function.

x

An object returned by hplm()

smd

If TRUE, reports between-case standardized mean differences.

casewise

Returns the estimations for each case

object

An scdf or an object exported from a scan function.

caption

Character string with table caption. If left NA (default) a caption will be created based on the exported object.

footnote

Character string with table footnote. If left NA (default) a footnote will be created based on the exported object.

filename

String containing the file name. If a filename is given the output will be written to that file.

kable_styling_options

list with arguments passed to the kable_styling function.

kable_options

list with arguments passed to the kable function.

round

Integer passed to the digits argument internally used to round values.

nice

If set TRUE (default) output values are rounded and optimized for publication tables.

Value

modelList containing infromation about the applied model.
NNumber of single-cases.
formulaA list containing the fixed and the random formulas of the hplm model.
hplmObject of class lme contaning the multilevel model.
model.0Object of class lme containing the Zero Model.
ICCList containing intraclass correlation and test parameters.
model.withoutObject of class gls containing the fixed effect model.
contrastList with contrast definitions.

Functions

  • print(sc_hplm): Print results

  • export(sc_hplm): Export results as html table (see export())

  • coef(sc_hplm): Extract model coefficients

See also

Other regression functions: autocorr(), corrected_tau(), mplm(), plm(), trend()

Author

Juergen Wilbert

Examples


## Compute hplm model on a MBD over fifty cases (restricted log-likelihood)
hplm(exampleAB_50, method = "REML", random.slopes = FALSE)
#> Hierarchical Piecewise Linear Regression
#> 
#> Estimation method REML 
#> Contrast model: W / level: first, slope: first
#> 50 Cases
#> 
#> ICC = 0.292; L = 341.2; p = 0.000
#> 
#> Fixed effects (values ~ 1 + mt + phaseB + interB)
#> 
#>                    B    SE   df      t p
#> Intercept     48.398 1.496 1328 32.351 0
#> Trend mt       0.579 0.116 1328  5.007 0
#> Level phase B 14.038 0.655 1328 21.442 0
#> Slope phase B  0.902 0.119 1328  7.589 0
#> 
#> Random effects (~1 | case)
#> 
#>           EstimateSD
#> Intercept     10.073
#> Residual       5.290

## Analyzing with additional L2 variables
Leidig2018 |>
  add_l2(Leidig2018_l2) |>
  hplm(update.fixed = .~. + gender + migration + ITRF_TOTAL*phaseB,
       slope = FALSE, random.slopes = FALSE, lr.test = FALSE
  )
#> Hierarchical Piecewise Linear Regression
#> 
#> Estimation method ML 
#> Contrast model: W / level: first, slope: first
#> 35 Cases
#> 
#> ICC = 0.344; L = 875.4; p = 0.000
#> 
#> Fixed effects (academic_engagement ~ mt + phaseB + gender + migration + ITRF_TOTAL +     phaseB:ITRF_TOTAL)
#> 
#>                               B    SE   df      t     p
#> Intercept                 3.751 0.262 2376 14.302 0.000
#> Trend mt                  0.004 0.001 2376  6.019 0.000
#> Level phase B             0.667 0.098 2376  6.808 0.000
#> gender                   -0.020 0.301   31 -0.067 0.947
#> migration                -0.300 0.193   31 -1.556 0.130
#> ITRF_TOTAL               -0.035 0.013   31 -2.674 0.012
#> Level phase B:ITRF_TOTAL -0.001 0.005 2376 -0.279 0.780
#> 
#> Random effects (~1 | case)
#> 
#>           EstimateSD
#> Intercept      0.557
#> Residual       0.785