Appendix C — Default settings

Some of the default settings of scan can be changed with the options() argument. Table C.1 shows a complete list of options and their default values.

# get the current value of an option
getOption("scan.print.rows")
[1] 15
# set option to a different value
options(scan.print.rows = 5, scan.print.scdf.name = FALSE)
print(exampleAB)
#A single-case data frame with three cases

 values mt phase | values mt phase | values mt phase |
     54  1     A |     41  1     A |     55  1     A |
     53  2     A |     59  2     A |     58  2     A |
     56  3     A |     56  3     A |     53  3     A |
     58  4     A |     51  4     A |     50  4     A |
     52  5     A |     52  5     A |     52  5     A |
# ... up to 15 more rows
options(scan.print.rows = 15, scan.print.scdf.name = TRUE)
print(exampleAB)
#A single-case data frame with three cases

 Johanna: values mt phase | Karolina: values mt phase | Anja: values mt phase
              54  1     A |               41  1     A |           55  1     A
              53  2     A |               59  2     A |           58  2     A
              56  3     A |               56  3     A |           53  3     A
              58  4     A |               51  4     A |           50  4     A
              52  5     A |               52  5     A |           52  5     A
              61  6     B |               57  6     B |           55  6     B
              62  7     B |               56  7     B |           68  7     B
              71  8     B |               67  8     B |           68  8     B
              66  9     B |               75  9     B |           81  9     B
              64 10     B |               66 10     B |           67 10     B
              78 11     B |               69 11     B |           78 11     B
              70 12     B |               68 12     B |           73 12     B
              74 13     B |               73 13     B |           72 13     B
              82 14     B |               77 14     B |           78 14     B
              77 15     B |               79 15     B |           81 15     B
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
# ... up to five more rows
Table C.1: Scan Options
Option Default What it does ...
scan.print.cases "fit" Max number of cases printed for scdf objects
scan.print.rows 15 Max number of rows printed for scdf objects
scan.print.cols "all" Max number of columns printed for scdf objects
scan.print.digits 2 Max number of digits printed for scdf objects
scan.print.long FALSE If TRUE, prints scdf objects in long format
scan.print.scdf.name TRUE If TRUE, prints case names of scdf
scan.deprecated.warning FALSE When TRUE returns information on deprecated functions
scan.export.kable list(digits = 2, linesep = "", booktab = TRUE) List with default arguments for the kable argument of the export function
scan.export.kable_styling list(bootstrap_options = c("bordered", "condensed"), full_width = FALSE, position = "left", latex_options = "hold_position", htmltable_class = "lightable-classic") List with default arguments for the kable_styling argument of the export function
scan.export.engine "gt" NA
scan.export.footnote.collapse "; " NA
scan.plot.style "grid" NA
scan.print.bar "|" | A |

D Example datasets

Table D.1: Example scdfs
Name Info Author
Beretvas2008 Beretvas, S., & Chung, H. (2008). An evaluation of modified R2-change effect size indices for single-subject experimental designs. Evidence-Based Communication Assessment and Intervention, 2, 120-128.
Borckardt2014 Borckardt, J. J., & Nash, M. R. (2014). Simulation modelling analysis for small sets of single-subject data collected over time. Neuropsychological Rehabilitation, 24(3-4), 492-506.
Grosche2011 Direct instruction intervention on reading accuracy. Grosche, M. (2011). Effekte einer direkt-instruktiven Förderung der Lesegenauigkeit. Empirische Sonderpädagogik, 3(2), 147-161.
Grosche2014 Data from a multiple material multi person intervention study on reading. Michael Grosche, Timo Lueke, and Juergen Wilbert
GruenkeWilbert2014 Data from an intervention study on text comprehension. Gruenke, M., Wilbert, J., & Stegemann-Calder, K. (2013). Analyzing the effects of story mapping on the reading comprehension of children with low intellectual abilities. Learning Disabilities: A Contemporary Journal, 11(2), 51-64.
Huber2014 Behavioral data (compliance in percent). Christian Huber
Huitema2000 Example from Huitema, B. E., & Mckean, J. W. (2000). Design specification issues in time-series intervention models. Educational and Psychological Measurement, 60(1), 38-58.
Leidig2018 Leidig, T., Casale, G., Wilbert, J., Hennemann, T., Volpe, R. J., Briesch, A., & Grosche, M. (2022). Individual, generalized, and moderated effects of the good behavior game on at-risk primary school students: A multilevel multiple baseline study using behavioral progress monitoring. Frontiers in Education, 7. https://www.frontiersin.org/articles/10.3389/feduc.2022.917138
Leidig2018_l2
Lenz2013 Lenz, A. S. (2013). Calculating Effect Size in Single-Case Research: A Comparison of Nonoverlap Methods. Measurement and Evaluation in Counseling and Development, 46(1), 64-73.
Parker2007 Parker, R. I., Hagan-Burke, S., & Vannest, K. (2007). Percentage of All Non-Overlapping Data (PAND) An Alternative to PND. The Journal of Special Education, 40(4), 194-204.
Parker2009 Parker, R. I., Vannest, K. J., & Brown, L. (2009). The improvement rate difference for single-case research. Exceptional Children, 75(2), 135-150.
Parker2009b Parker, R. I., & Vannest, K. (2009). An improved effect size for single-case research: Nonoverlap of all pairs. Behavior Therapy, 40(4), 357-367.
Parker2011 Parker, R. I., Vannest, K. J., Davis, J. L., & Sauber, S. B. (2011). Combining Nonoverlap and Trend for Single-Case Research: Tau-U. Behavior Therapy, 42(2), 284-299.
Parker2011b Parker, R. I., Vannest, K. J., & Davis, J. L. (2011). Effect Size in Single-Case Research: A Review of Nine Nonoverlap Techniques. Behavior Modification, 35(4), 303-322. https://doi.org/10.1177/0145445511399147
SSDforR2017 Example from the SSDforR package. Charles Auerbach, PhD & Wendy Zeitlin, PhD; Yeshiva University, Wurzweiler school of social work.
Tarlow2017 Tarlow, K. R. (2017). An Improved Rank Correlation Effect Size Statistic for Single-Case Designs: Baseline Corrected Tau. Behavior Modification, 41(4), 427-467. https://doi.org/10.1177/0145445516676750
Waddell2011 Example from Waddell, D. E., Nassar, S. L., & Gustafson, S. A. (2011). Single-Case Design in Psychophysiological Research: Part II: Statistical Analytic Approaches. Journal of Neurotherapy, 15(2), 160 - 169.
byHeart2011 Data from university students learning vocabulary by heart and checking their progress with 20 flashcards each session. Juergen Wilbert, 2011
exampleA1B1A2B2
exampleA1B1A2B2_zvt
exampleAB Randomly created data with normal distributed dependent variable.
exampleABAB Randomly created data with uniform distribution.
exampleABC
exampleABC_150 Random data-set for testing out hplm. Level and slope effects vary.
exampleABC_outlier Random data-set based on exampleABC but with outliers.
exampleAB_50
exampleAB_50.l2
exampleAB_add Random data-set for testing out plm with additional variables.
exampleAB_decreasing Random data-set from a poisson distribution. Level effect is negative.
exampleAB_mpd A multiple phase design study. Juergen Wilbert
exampleAB_score Random data-set for binomial data.
exampleAB_simple A simple multiple baseline AB Design. Juergen Wilbert
example_A24 Number of injuries on a German autobahn before and after implementation of a speedlimit (130km/h). Ministerium fuer Infrastruktur und Landesplanung. Land Brandenburg.