
12 Multivariate piecewise regression
Note
Read Chapter 10 before you start with this chapter.
The mplm function call:
mplm(
data,
dvar,
mvar,
pvar,
model = c(“W”, “H-M”, “B&L-B”, “JW”),
contrast = c(“first”, “preceding”),
contrast_level = c(NA, “first”, “preceding”),
contrast_slope = c(NA, “first”, “preceding”),
trend = TRUE,
level = TRUE,
slope = TRUE,
formula = NULL,
update = NULL,
na.action = na.omit,
…
)

<- mplm(exampleAB_add, dvar = c("wellbeing", "depression"))
fit fit
Multivariate piecewise linear model
Dummy model: W level = first, slope = first
Type III MANOVA
Pillai = 0.42; F(6, 72) = 3.20; p = 0.008
wellbeing depression Pillai F p
Intercept 48.417 4.200 0.915 188.949 0.000
Trend 0.379 0.114 0.055 1.009 0.375
Level Medication 3.588 -0.945 0.033 0.588 0.561
Slope Medication -0.275 -0.165 0.039 0.712 0.498
Formula: y ~ 1 + day + phaseMedication + interMedication
print(fit, std = TRUE)
Multivariate piecewise linear model
Dummy model: W level = first, slope = first
Type III MANOVA
Pillai = 0.42; F(6, 72) = 3.20; p = 0.008
wellbeing depression Pillai F p
Intercept 0.000 0.000 0.915 188.949 0.000
Trend 0.694 0.441 0.055 1.009 0.375
Level Medication 0.276 -0.153 0.033 0.588 0.561
Slope Medication -0.356 -0.449 0.039 0.712 0.498
Coefficients are standardized
Formula: y ~ 1 + day + phaseMedication + interMedication